Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165914

RESUMO

INTRODUCTION: Arboviral diseases, such as dengue, chikungunya, yellow fever, and Zika, are caused by viruses that are transmitted to humans through mosquito bites. However, the status of arbovirus vectors in eastern Ethiopia is unknown. The aim of this study was to investigate distribution, breeding habitat, bionomics and phylogenetic relationship of Aedes aegypti mosquito species in Somali Regional State, Eastern Ethiopia. METHODS: Entomological surveys were conducted in four sites including Jigjiga, Degehabur, Kebridehar and Godey in 2018 (October to December) to study the distribution of Ae. aegypti and with a follow-up collection in 2020 (July-December). In addition, an investigation into the seasonality and bionomics of Ae. aegypti was conducted in 2021 (January-April) in Kebridehar town. Adult mosquitoes were collected from indoor and outdoor locations using CDC light traps (LTs), pyrethrum spray collection (PSCs), and aspirators. Larvae and pupae were also collected from a total of 169 water-holding containers using a dipper between October and November 2020 (rainy season) in Kebridehar town. The species identification of wild caught and reared adults was conducted using a taxonomic key. In addition, species identification using mitochondrial and nuclear genes maximum likelihood-based phylogenetic analysis was performed. RESULTS: In the 2018 collection, Ae. aegypti was found in all study sites (Jigjiga, Degahabour, Kebridehar and Godey). In the 2020-2021 collection, a total of 470 (Female = 341, Male = 129) wild caught adult Ae. aegypti mosquitoes were collected, mostly during the rainy season with the highest frequency in November (n = 177) while the lowest abundance was in the dry season (n = 14) for both February and March. The majority of Ae. aegypt were caught using PSC (n = 365) followed by CDC LT (n = 102) and least were collected by aspirator from an animal shelter (n = 3). Aedes aegypti larval density was highest in tires (0.97 larvae per dip) followed by cemented cisterns (0.73 larvae per dip) and the Relative Breeding Index (RBI) was 0.87 and Container Index (CI) was 0.56. Genetic analysis of ITS2 and COI revealed one and 18 haplotypes, respectively and phylogenetic analysis confirmed species identification. The 2022 collection revealed no Ae. aegpti, but two previously uncharacterized species to that region. Phylogenetic analysis of these two species revealed their identities as Ae. hirsutus and Culiseta longiareolata. CONCLUSION: Data from our study indicate that, Ae. aegypti is present both during the wet and dry seasons due to the availability of breeding habitats, including water containers like cemented cisterns, tires, barrels, and plastic containers. This study emphasizes the necessity of establishing a national entomological surveillance program for Aedes in Somali region.


Assuntos
Aedes , Dengue , Infecção por Zika virus , Zika virus , Masculino , Feminino , Humanos , Animais , Adulto , Aedes/genética , Filogenia , Etiópia , Funções Verossimilhança , Somália , Mosquitos Vetores/genética , Melhoramento Vegetal , Ecossistema , Ecologia , Água , Larva/genética
2.
Immun Inflamm Dis ; 12(1): e1148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270297

RESUMO

BACKGROUND: Coronavirus disease 19 (COVID-19) is life-threatening infectious disease caused by SARS-CoV-2 virus that caused a global pandemic. SARS-CoV-2 has been widely transmitted throughout Ethiopia, with over 501,060 cases confirmed and 7574 deaths until November 2023. This study assessed for the first time the seroprevalence SARS-CoV-2 in the general population of the Somali Region during the COVID-19 pandemic. METHODS: A cross-sectional study design was conducted from May to June 2021 in 14 districts of Somali Region. Blood samples were collected in 820 participants in addition to administering a questionnaire that included sociodemographic characteristics and history of clinical symptoms of COVID-19. Blood samples were tested for the presence or absence of anti-SARS-CoV-2 using a commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit (Euroimmun). RESULTS: Overall, 477 (58.2%) were male and 343 (41.8%) were female. The majority of the participants (N = 581; 70.9%) were between 18 and 34 years old and not vaccinated against COVID-19 (N = 793; 96.7%). The overall seroprevalence of SARS-CoV-2 antibodies was 41.7% (95% CI: 33.3%-47.6%). The highest prevalence was found in Goljano district (70%) and the lowest in Gunagado district (22.5%). Only age was found to be associated with COVID-19 seropositivity. CONCLUSION: Prevalence of SARS-CoV-2 antibodies was the highest ever reported in Ethiopia, indicating that a large proportion of the population had been infected 14 months after the start of the outbreak in the country. Such studies are important to swiftly reassess and improve specific COVID-19 preventive and control measures to reduce transmissions within the community in a given setting.


Assuntos
COVID-19 , Humanos , Feminino , Masculino , Adolescente , Adulto Jovem , Adulto , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Transversais , Etiópia/epidemiologia , Pandemias , Estudos Soroepidemiológicos , Somália , Anticorpos Antivirais
3.
Lancet Planet Health ; 7(12): e999-e1005, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38056970

RESUMO

Anopheles stephensi is a major vector of malaria in Asia and the Arabian Peninsula, and its recent invasion into Africa poses a major threat to malaria control and elimination efforts on the continent. The mosquito is well adapted to urban environments, and its presence in Africa could potentially lead to an increase in malaria transmission in cities. Most of the knowledge about An stephensi ecology in Africa has been generated from studies conducted during the rainy season, when vectors are most abundant. Here, we provide evidence from the peak of the dry season in the city of Jigjiga in Ethiopia, and report An stephensi immature stages infesting predominantly in water reservoirs made to support construction operations (ie, in construction sites or associated with brick-manufacturing businesses). Political and economic changes in Ethiopia (particularly the Somali Region) have fuelled an unprecedented construction boom since 2018 that, in our opinion, has been instrumental in the establishment, persistence, and propagation of An stephensi via the year-round availability of perennial larval habitats associated with construction. We argue that larval source management during the dry season might provide a unique opportunity for focused control of An stephensi in Jigjiga and similar areas.


Assuntos
Anopheles , Malária , Animais , Etiópia , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Ecossistema
4.
J Am Mosq Control Assoc ; 39(4): 284-287, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38078512

RESUMO

We report the efficacy of a commercial formulation of the insecticide spinosad against larvae of Anopheles stephensi populations found in the city of Jigjiga, Somali Region, eastern Ethiopia. Batches of 25 larvae (late III to early IV instars) collected from large water storage reservoirs associated with construction sites (the primary An. stephensi larval site in the dry season) were tested under laboratory conditions against each insecticide at a dose recommended by the manufacturer (Natular® G30, 0.02 g/5 liter), following World Health Organization guidelines. Mortality at 24-48 h postexposure was 100%. Results show that spinosad is effective against An. stephensi larvae and suggest that it may be a useful tool as part of larval source management plans aimed at controlling this invasive malaria vector in Ethiopia.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Inseticidas/farmacologia , Malária/prevenção & controle , Etiópia , Mosquitos Vetores , Larva
5.
Mol Ecol ; 32(21): 5695-5708, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795951

RESUMO

Anopheles stephensi invasion in the Horn of Africa (HoA) poses a substantial risk of increased malaria disease burden in the region. An understanding of the history of introduction(s), establishment(s) and potential A. stephensi sources in the HoA is needed to predict future expansions and establish where they may be effectively controlled. To this end, we take a landscape genomic approach to assess A. stephensi origins and spread throughout the HoA, information essential for vector control. Specifically, we assayed 2070 genome-wide single nucleotide polymorphisms across 214 samples spanning 13 populations of A. stephensi from Ethiopia and Somaliland collected in 2018 and 2020, respectively. Principal component and genetic ancestry analyses revealed clustering that followed an isolation-by-distance pattern, with genetic divergence among the Ethiopian samples significantly correlating with geographical distance. Additionally, genetic relatedness was observed between the northeastern and east central Ethiopian A. stephensi populations and the Somaliland A. stephensi populations. These results reveal population differentiation and genetic connectivity within HoA A. stephensi populations. Furthermore, based on genetic network analysis, we uncovered that Dire Dawa, the site of a spring 2022 malaria outbreak, was one of the major hubs from which sequential founder events occurred in the rest of the eastern Ethiopian region. These findings can be useful for the selection of sites for heightened control to prevent future malaria outbreaks. Finally, we did not detect significant genotype-environmental associations, potentially due to the recency of their colonization and/or other anthropogenic factors leading to the initial spread and establishment of A. stephensi. Our study highlights how coupling genomic data at landscape levels can shed light into even ongoing invasions.


Assuntos
Anopheles , Malária , Animais , Humanos , Anopheles/genética , Mosquitos Vetores/genética , Redes Reguladoras de Genes , Metagenômica , Malária/epidemiologia , Malária/genética , Genômica , Etiópia
6.
Trop Dis Travel Med Vaccines ; 9(1): 8, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430336

RESUMO

BACKGROUND: In the Somali region of Ethiopia, visceral leishmaniasis (VL) is a public health concern. However, VL epidemiology and sand fly vectors have not been well studied in various areas of the regional state, including Denan district. Therefore, this study was conducted to determine the sero-prevalence, associated factors, and distribution of sand fly vectors of VL in Denan district, south-eastern Ethiopia. METHODS: A facility-based cross-sectional study was conducted from April to September 2021 among VL patients with classic signs and symptoms visiting Denan Health Center in south-eastern Ethiopia. Using a convenience sampling method, 187 blood samples were collected from individuals who visited Denan Health Center during the study period. Blood samples were subjected to Direct Agglutination Test for the detection of antibodies to VL. A pre-tested structured questionnaire was also used to gather information on risk factors and other characteristics of knowledge and attitude assessment. Sand flies were also collected from indoor, peri-domestic, mixed forest, and termite mounds using light and sticky traps to determine the fauna and abundance. RESULTS: The overall sero-prevalence rate was 9.63% (18/187). The sero-prevalence was significantly associated with outdoor sleeping (OR = 2.82), the presence of damp floors (OR = 7.76), and sleeping outdoor near animals (OR = 3.22). Around 53.48% of the study participants had previously heard about VL. Study participants practiced different VL control methods, including bed nets (42%), insecticide spraying (32%), smoking plant parts (14%), and environmental cleaning (8%). In total, 823 sand fly specimens, comprising 12 species in two genera (Phlebotomus and Sergentomyia), were trapped and identified. The most abundant species was Sergentomyia clydei (50.18%), followed by Phlebotomus orientalis (11.42%). Also, a higher proportion of P. orientalis was found in termite mounds (65.43%), followed by mixed forest (37.8%) and peri-domestic (20.83%) habitats. CONCLUSION: The study demonstrated a 9.63% sero-positivity of VL and a remarkable gap in knowledge, attitude, and practices towards VL. P. orientalis was also detected, which could be a probable vector in this area. Thus, public education should be prioritized to improve the community's awareness of VL and its public health impact. In addition, detailed epidemiological and entomological studies are recommended.

7.
Heliyon ; 9(3): e14344, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925525

RESUMO

Phlebotomine sandflies have a long history of association with humans, which makes them the only proven natural vectors of Leishmania species, the parasitic protozoans that cause leishmaniases in humans and animals. In Ethiopia, the three forms of leishmaniases, viz., visceral, dermal and mucocutaneous are endemic in different parts of the country. Since the first report of phlebotomine sandflies in Ethiopia in 1936, the distribution of different species and their role in the transmission of leishmaniases have been extensively studied. The objective of this review was to summarize the patchy information and give an updated list of phlebotomine sandfly species in Ethiopia and their known geographical distribution in the country. Peer-reviewed literature search was conducted using online databases. All articles published which focus on distribution and medical importance of Phlebotomus and Sergentomyia species of Ethiopia starting from 1936 up to 2022 were reviewed. Until July 2022, 65 phlebotomine sandfly species have been reported, belonging to the genus Phlebotomus and Sergentomyia. The genus Phlebotomus in Ethiopia is represented by six subgenera such as Adlerius, Anaphlebotomus, Larroussius, Paraphlebotomus Phlebotomus and Synphlebotomus, whereas the genus Sergentomyia is represented by six subgenera, namely Grassomyia, Parrotomyia, Parvidens, Rondanomyia, Sergentomyia, and Sintonius.

8.
Parasit Vectors ; 15(1): 178, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610655

RESUMO

BACKGROUND: About two out of three Ethiopians are at risk of malaria, a disease caused by the parasites Plasmodium falciparum and Plasmodium vivax. Anopheles stephensi, an invasive vector typically found in South Asia and the Middle East, was recently found to be distributed across eastern and central Ethiopia and is capable of transmitting both P. falciparum and P. vivax. The detection of this vector in the Horn of Africa (HOA) coupled with widespread insecticide resistance requires that new methods of vector control be investigated in order to control the spread of malaria. Wolbachia, a naturally occurring endosymbiotic bacterium of mosquitoes, has been identified as a potential vector control tool that can be explored for the control of malaria transmission. Wolbachia could be used to control the mosquito population through suppression or potentially decrease malaria transmission through population replacement. However, the presence of Wolbachia in wild An. stephensi in eastern Ethiopia is unknown. This study aimed to identify the presence and diversity of Wolbachia in An. stephensi across eastern Ethiopia. METHODS: DNA was extracted from An. stephensi collected from eastern Ethiopia in 2018 and screened for Wolbachia using a 16S targeted PCR assay, as well as multilocus strain typing (MLST) PCR assays. Haplotype and phylogenetic analysis of the sequenced 16S amplicons were conducted to compare with Wolbachia from countries across Africa and Asia. RESULTS: Twenty out of the 184 mosquitoes screened were positive for Wolbachia, with multiple haplotypes detected. In addition, phylogenetic analysis revealed two superclades, representing Wolbachia supergroups A and B (bootstrap values of 81 and 72, respectively) with no significant grouping of geographic location or species. A subclade with a bootstrap value of 89 separates the Ethiopian haplotype 2 from other sequences in that superclade. CONCLUSIONS: These findings provide the first evidence of natural Wolbachia populations in wild An. stephensi in the HOA. They also identify the need for further research to confirm the endosymbiotic relationship between Wolbachia and An. stephensi and to investigate its utility for malaria control in the HOA.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Malária , Wolbachia , Animais , Anopheles/genética , Etiópia/epidemiologia , Haplótipos , Humanos , Malária Falciparum/epidemiologia , Mosquitos Vetores/genética , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Wolbachia/genética
9.
Infect Genet Evol ; 99: 105235, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123054

RESUMO

Anopheles stephensi is a malaria vector that has been recently introduced into East Africa, where it threatens to increase malaria disease burden. The use of insecticides, especially pyrethroids, is still one of the primary malaria vector control strategies worldwide. The knockdown resistance (kdr) mutation in the IIS6 transmembrane segment of the voltage-gated sodium channel (vgsc) is one of the main molecular mechanisms of pyrethroid resistance in Anopheles. Extensive pyrethroid resistance in An. stephensi has been previously reported in Ethiopia. Thus, it is important to determine whether or not the kdr mutation is present in An. stephensi populations in Ethiopia to inform vector control strategies. In the present study, the kdr locus was analyzed in An. stephensi collected from ten urban sites (Awash Sebat Kilo, Bati, Dire Dawa, Degehabur, Erer Gota, Godey, Gewane, Jigjiga, Semera, and Kebridehar) situated in Somali, Afar, and Amhara regions, and Dire Dawa Administrative City, to evaluate the frequency and evolution of kdr mutations and the association of the mutation with permethrin resistance phenotypes. Permethrin is one of the pyrethroid insecticides used for vector control in eastern Ethiopia. DNA extractions were performed on adult mosquitoes from CDC light trap collections and those raised from larval and pupal collections. PCR and targeted sequencing were used to analyze the IIS6 transmembrane segment of the vgsc gene. Of 159 An. stephensi specimens analyzed from the population survey, nine (5.7%) carried the kdr mutation (L1014F). An. stephensi with kdr mutations were only observed from Bati, Degehabur, Dire Dawa, Gewane, and Semera. We further selected randomly twenty resistant and twenty susceptible An. stephensi mosquitoes from Dire Dawa post-exposure to permethrin and investigated the role of kdr in pyrethroid resistance by comparing the vgsc gene in the two populations. We found no kdr mutations in the permethrin-resistant mosquitoes. Population genetic analysis of the sequences, including neighboring introns, revealed limited evidence of non-neutral evolution (e.g., selection) at this locus. The low kdr mutation frequency detected and the lack of kdr mutation in the permethrin-resistant mosquitoes suggest the existence of other molecular mechanisms of pyrethroid resistance in eastern Ethiopian An. stephensi.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , Etiópia , Genética Populacional , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Mutação , Permetrina , Piretrinas/farmacologia
10.
Am J Trop Med Hyg ; 106(2): 632-638, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35008054

RESUMO

The malaria vector, Anopheles stephensi, which is typically restricted to South Asia and the Middle East, was recently detected in the Horn of Africa. Addressing the spread of this vector could involve integrated vector control that considers the status of insecticide resistance of multiple vector species in the region. Previous reports indicate that the knockdown resistance mutations (kdr) in the voltage-gated sodium channel (vgsc) are absent in both pyrethroid-resistant and pyrethroid-sensitive An. stephensi in eastern Ethiopia; however, similar information about other vector species in the same areas is limited. In this study, kdr and the neighboring intron were analyzed in An. stephensi, An. arabiensis, and Culex pipiens s.l. collected between 2016 and 2017 to determine the evolutionary history of kdr in eastern Ethiopia. A sequence analysis revealed that all of Cx. pipiens s.l. (N = 42) and 71.6% of the An. arabiensis (N = 67) carried kdr L1014F, which is known to confer target-site pyrethroid resistance. Intronic variation was only observed in An. stephensi (six segregating sites, three haplotypes), which was previously shown to have no kdr mutations. In addition, no evidence of non-neutral evolutionary processes was detected at the An. stephensi kdr intron, thereby further supporting the target-site mechanism not being a major resistance mechanism in this An. stephensi population. Overall, these results show key differences in the evolution of target-site pyrethroid/dichlorodiphenyltrichloroethane resistance mutations in populations of vector species from the same region. Variations in insecticide resistance mechanism profiles between eastern Ethiopian mosquito vectors may lead to different responses to insecticides used in integrated vector control.


Assuntos
Anopheles/genética , Culex/genética , Loci Gênicos , Inseticidas/farmacologia , Malária/transmissão , Mosquitos Vetores/genética , Piretrinas/farmacologia , Animais , Etiópia , Evolução Molecular , Resistência a Inseticidas/genética , Mutação/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/genética
11.
Parasit Vectors ; 14(1): 602, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895319

RESUMO

BACKGROUND: The recent detection of the South Asian malaria vector Anopheles stephensi in the Horn of Africa (HOA) raises concerns about the impact of this mosquito on malaria transmission in the region. Analysis of An. stephensi genetic diversity and population structure can provide insight into the history of the mosquito in the HOA to improve predictions of future spread. We investigated the genetic diversity of An. stephensi in eastern Ethiopia, where detection suggests a range expansion into this region, in order to understand the history of this invasive population. METHODS: We sequenced the cytochrome oxidase subunit I (COI) and cytochrome B gene (CytB) in 187 An. stephensi collected from 10 sites in Ethiopia in 2018. Population genetic, phylogenetic, and minimum spanning network analyses were conducted for Ethiopian sequences. Molecular identification of blood meal sources was also performed using universal vertebrate CytB sequencing. RESULTS: Six An. stephensi COI-CytB haplotypes were observed, with the highest number of haplotypes in the northeastern sites (Semera, Bati, and Gewana towns) relative to the southeastern sites (Kebridehar, Godey, and Degehabur) in eastern Ethiopia. We observed population differentiation, with the highest differentiation between the northeastern sites compared to central sites (Erer Gota, Dire Dawa, and Awash Sebat Kilo) and the southeastern sites. Phylogenetic and network analysis revealed that the HOA An. stephensi are more genetically similar to An. stephensi from southern Asia than from the Arabian Peninsula. Finally, molecular blood meal analysis revealed evidence of feeding on cows, goats, dogs, and humans, as well as evidence of multiple (mixed) blood meals. CONCLUSION: We show that An. stephensi is genetically diverse in Ethiopia and with evidence of geographical structure. Variation in the level of diversity supports the hypothesis for a more recent introduction of An. stephensi into southeastern Ethiopia relative to the northeastern region. We also find evidence that supports the hypothesis that HOA An. stephensi populations originate from South Asia rather than the Arabian Peninsula. The evidence of both zoophagic and anthropophagic feeding support the need for additional investigation into the potential for livestock movement to play a role in vector spread in this region.


Assuntos
Anopheles/genética , Variação Genética , Malária/transmissão , Mosquitos Vetores/genética , Animais , Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Etiópia , Genética Populacional , Haplótipos , Filogenia
13.
Malar J ; 20(1): 263, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107943

RESUMO

BACKGROUND: Anopheles stephensi, an invasive malaria vector, was first detected in Africa nearly 10 years ago. After the initial finding in Djibouti, it has subsequently been found in Ethiopia, Sudan and Somalia. To better inform policies and vector control decisions, it is important to understand the distribution, bionomics, insecticide susceptibility, and transmission potential of An. stephensi. These aspects were studied as part of routine entomological monitoring in Ethiopia between 2018 and 2020. METHODS: Adult mosquitoes were collected using human landing collections, pyrethrum spray catches, CDC light traps, animal-baited tent traps, resting boxes, and manual aspiration from animal shelters. Larvae were collected using hand-held dippers. The source of blood in blood-fed mosquitoes and the presence of sporozoites was assessed through enzyme-linked immunosorbent assays (ELISA). Insecticide susceptibility was assessed for pyrethroids, organophosphates and carbamates. RESULTS: Adult An. stephensi were collected with aspiration, black resting boxes, and animal-baited traps collecting the highest numbers of mosquitoes. Although sampling efforts were geographically widespread, An. stephensi larvae were collected in urban and rural sites in eastern Ethiopia, but An. stephensi larvae were not found in western Ethiopian sites. Blood-meal analysis revealed a high proportion of blood meals that were taken from goats, and only a small proportion from humans. Plasmodium vivax was detected in wild-collected An. stephensi. High levels of insecticide resistance were detected to pyrethroids, carbamates and organophosphates. Pre-exposure to piperonyl butoxide increased susceptibility to pyrethroids. Larvae were found to be susceptible to temephos. CONCLUSIONS: Understanding the bionomics, insecticide susceptibility and distribution of An. stephensi will improve the quality of a national response in Ethiopia and provide additional information on populations of this invasive species in Africa. Further work is needed to understand the role that An. stephensi will have in Plasmodium transmission and malaria case incidence. While additional data are being collected, national programmes can use the available data to formulate and operationalize national strategies against the threat of An. stephensi.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Resistência a Inseticidas , Traços de História de Vida , Animais , Anopheles/crescimento & desenvolvimento , Etiópia , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Malária/transmissão
14.
J Arthropod Borne Dis ; 14(2): 153-161, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33365343

RESUMO

BACKGROUND: Malaria is one of the major public health concerns in Ethiopia. Control options available for the management of malaria, include case detection, personal protection and larval source management. Effective control of Anopheles larvae largely depends on understanding of the habitats of the vectors. The aims of this study were to identify the breeding habitats of mosquitoes and characterize the larval habitats in Gende Wuha Town in northwestern Ethiopia. METHODS: Different aquatic habitats were sampled and characterized for anopheline larvae from November 2012 to June 2013. RESULTS: In total, 2784 larvae of Anopheles mosquitoes were collected from various breeding habitats. Microscopic identification of the III and IV instars revealed the presence of seven Anopheles species. Of the Anopheles spp, Anopheles gambiae s.l. (80%) was the most predominant species in the study area. Spearman correlation coefficient results also determined that the density of An. gambiae s.l. increased significantly with habitat temperature (r= 0.346, p< 0.01). Significantly higher An. gambiae s.l. larvae were obtained in non-shaded habitats (z= -3.120, p< 0.05) when compared with shaded habitats. CONCLUSION: The current study demonstrated An. gambiae s.l., the principal malaria vector in the country, is the predominant species in the larval sampling habitats. It was also noted the importance of edge of stream as larva breeding habitats for this species during the dry season of the year. Therefore, attention should be given for this breeding habitat for control of the vector during dry season.

15.
Infect Dis Poverty ; 9(1): 160, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33222698

RESUMO

BACKGROUND: Ethiopia has shown notable progress in reducing the burden of malaria over the past two decades. Because of this progress, the country has shifted efforts from control to elimination of malaria. This study was conducted to analyse the malaria epidemiology and stratification of incidence in the malaria elimination setting in eastern Ethiopia. METHODS: A retrospective study was conducted to analyse the epidemiology of malaria by reviewing the district health office data from 2013 to 2019 in Harari Region. In addition, three years of sub-district level malaria data were used to stratify the malaria transmission intensity. Malaria interventions (Long-lasting insecticidal nets [LLIN] and indoor residual spraying [IRS]) employed were reviewed to analyse the intervention coverage at the Regional level. Descriptive statistics were used to show the malaria transmission in terms of years, season and species of the malaria parasite. Incidence rate per 1000 population and death rate per 1 000 000 population at risk were computed using the total population of each year. RESULTS: In the Harari Region, malaria incidence showed a more pronounced declining trend from 2017 to 2019. Plasmodium falciparum, P. vivax and mixed infections accounted for 69.2%, 30.6% and 0.2% of the cases, respectively. There was an increment in malaria intervention coverage and improved malaria diagnosis. In the year 2019 the coverage of LLIN and IRS in the Region were 93.4% and 85.1% respectively. The annual malaria incidence rate dropped from 42.9 cases per 1000 population in 2013 to 6.7 cases per 1000 population in 2019. Malaria-related deaths decreased from 4.7 deaths per 1 000 000 people annually in 2013 to zero, and there have been no deaths reported since 2015. The malaria risk appears to be heterogeneous and varies between districts. A higher number of malaria cases were recorded in Erer and Jenella districts, which constitute 62% of the cases in the Region. According to the sub-district level malaria stratification, there was shrinkage in the malaria transmission map and about 70% of the sub-districts have achieved elimination targets. CONCLUSIONS: In the Harari Region, malaria morbidity and mortality have been significantly declined. Thus, if this achievement is sustained and scaling-up of the existing malaria prevention and control strategies by focusing on those populations living in the higher malaria transmission districts and sub-districts, planning of malaria elimination from the study area might be feasible.


Assuntos
Malária/epidemiologia , Malária/prevenção & controle , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Coinfecção/parasitologia , Erradicação de Doenças , Etiópia/epidemiologia , Humanos , Incidência , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/administração & dosagem , Malária/mortalidade , Malária/transmissão , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Pessoa de Meia-Idade , Controle de Mosquitos/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
16.
Malar J ; 19(1): 180, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398055

RESUMO

BACKGROUND: The movement of malaria vectors into new areas is a growing concern in the efforts to control malaria. The recent report of Anopheles stephensi in eastern Ethiopia has raised the necessity to understand the insecticide resistance status of the vector in the region to better inform vector-based interventions. The aim of this study was to evaluate insecticide resistance in An. stephensi in eastern Ethiopia using two approaches: (1) World Health Organization (WHO) bioassay tests in An. stephensi; and (2) genetic analysis of insecticide resistance genes in An. stephensi in eastern Ethiopia. METHODS: Mosquito larvae and pupae were collected from Kebri Dehar. Insecticide susceptibility of An. stephensi was tested with malathion 5%, bendiocarb 0.1%, propoxur 0.1%, deltamethrin 0.05%, permethrin 0.75%, pirimiphos-methyl 0.25% and DDT 4%, according to WHO standard protocols. In this study, the knockdown resistance locus (kdr) in the voltage gated sodium channel (vgsc) and ace1R locus in the acetylcholinesterase gene (ace-1) were analysed in An. stephensi. RESULTS: All An. stephensi samples were resistant to carbamates, with mortality rates of 23% and 21% for bendiocarb and propoxur, respectively. Adult An. stephensi was also resistant to pyrethroid insecticides with mortality rates 67% for deltamethrin and 53% for permethrin. Resistance to DDT and malathion was detected in An. stephensi with mortality rates of 32% as well as An. stephensi was resistance to pirimiphos-methyl with mortality rates 14%. Analysis of the insecticide resistance loci revealed the absence of kdr L1014F and L1014S mutations and the ace1R G119S mutation. CONCLUSION: Overall, these findings support that An. stephensi is resistant to several classes of insecticides, most notably pyrethroids. However, the absence of the kdr L1014 gene may suggest non-target site resistance mechanisms. Continuous insecticide resistance monitoring should be carried out in the region to confirm the documented resistance and exploring mechanisms conferring resistance in An. stephensi in Ethiopia.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Anopheles/genética , Etiópia , Feminino , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética
17.
Parasit Vectors ; 13(1): 35, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959237

RESUMO

BACKGROUND: The recent detection of the South Asian malaria vector Anopheles stephensi in Ethiopia and other regions in the Horn of Africa has raised concerns about its potential impact on malaria transmission. We report here the findings of a survey for this species in eastern Ethiopia using both morphological and molecular methods for species identification. METHODS: Adult and larval/pupal collections were conducted at ten sites in eastern Ethiopia and Anopheles specimens were identified using standard morphological keys and genetic analysis. RESULTS: In total, 2231 morphologically identified An. stephensi were collected. A molecular approach incorporating both PCR endpoint assay and sequencing of portions of the internal transcribed spacer 2 (ITS2) and cytochrome c oxidase subunit 1 (cox1) loci confirmed the identity of the An. stephensi in most cases (119/124 of the morphologically identified An. stephensi confirmed molecularly). Additionally, we observed Aedes aegypti larvae and pupae at many of the An. stephensi larval habitats. CONCLUSIONS: Our findings show that An. stephensi is widely distributed in eastern Ethiopia and highlight the need for further surveillance in the southern, western and northern parts of the country and throughout the Horn of Africa.


Assuntos
Anopheles/fisiologia , Malária/transmissão , Mosquitos Vetores/fisiologia , Aerossóis , Animais , Estudos Transversais , Etiópia/epidemiologia , Habitação/classificação , Inseticidas/administração & dosagem , Malária/epidemiologia , Reação em Cadeia da Polimerase , Estações do Ano
18.
Heliyon ; 5(7): e02132, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31384683

RESUMO

BACKGROUND: Visceral leishmaniasis (VL, or "kala-azar") is a major cause of disability and death, especially in East Africa. Its vectors, sand flies (Diptera: Psychodidae: Phlebotominae), are poorly controlled and guarded against in these regions, owing in part to a lack of understanding about their feeding behavior. METHODS: A total of 746 freshly fed female sand flies were collected in five population centers in Kafta Humera (northwestern Ethiopia), where VL is endemic. Flies were collected from habitats that ranged from inside houses to open fields, using light traps and sticky traps. Sources of sand fly blood meals were identified using enzyme-linked immunosorbent assays (ELISA) and DNA amplification with reverse-line blot analysis (PCR-RLB); 632 specimens were screened using ELISA, 408 of which had identifiable blood meals, and 114 were screened using PCR-RLB, 53 of which yielded identifications. Fly species determinations were based on morphology, and those specimens subjected to PCR-RLB were also screened for Leishmania parasites using conventional PCR to amplify the nuclear marker ITS1 (internal transcribed spacer 1) with Leishmania-specific primers. RESULTS: More than three-fourths of all sand flies collected were Phlebotomus orientalis, and the remaining portion was comprised of nine other species. Nearly two-thirds of P. orientalis specimens were collected at village peripheries. The most common blood source for all flies was donkey (33.9% of all identifications), followed by cow (24.2%), human (17.6%), dog (11.8%), and goat or sheep (8.6%); mixtures of blood meals from different sources were found in 28.2% of all flies screened. Unidentified blood meals, presumably from wildlife, not domestic animals, were significantly higher in farm fields. Leishmania parasites were not detected in any of the 114 flies screened, not surprising given an expected infection rate of 1-5 out of 1,000. Meals that included a mixture of human and cow blood were significantly more frequent relative to all cow meals than human blood meals were to non-cow meals, suggesting a zoopotentiative interaction between cows and humans in this system. CONCLUSIONS: Habitat and host preferences of sand fly vectors in Kafta Humera confirmed the finding of previous reports that the main vector in the region, Phlebotomus orientalis, is a highly opportunistic feeder that prefers large animals and is most commonly found at village peripheries. These results were similar to those of a previous study conducted in a nearby region (Tahtay Adiabo), except for the role of cattle on the prevalence of human blood meals. Preliminary examinations of blood meal data from different settings point to the need for additional surveys and field experiments to understand the role of livestock on biting risks.

19.
Malar J ; 18(1): 135, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992003

RESUMO

BACKGROUND: The recent finding of a typically non-African Anopheles species in eastern Ethiopia emphasizes the need for detailed species identification and characterization for effective malaria vector surveillance. Molecular approaches increase the accuracy and interoperability of vector surveillance data. To develop effective molecular assays for Anopheles identification, it is important to evaluate different genetic loci for the ability to characterize species and population level variation. Here the utility of the internal transcribed spacer 2 (ITS2) and cytochrome oxidase I (COI) loci for detection of Anopheles species from understudied regions of eastern Ethiopia was investigated. METHODS: Adult mosquitoes were collected from the Harewe locality (east) and Meki (east central) Ethiopia. PCR and Sanger sequencing were performed for portions of the ITS2 and COI loci. Both NCBI's Basic Local Alignment Search tool (BLAST) and phylogenetic analysis using a maximum-likelihood approach were performed to identify species of Anopheles specimens. RESULTS: Two species from the east Ethiopian collection, Anopheles arabiensis and Anopheles pretoriensis were identified. Analyses of ITS2 locus resulted in delineation of both species. In contrast, analysis of COI locus could not be used to delineate An. arabiensis from other taxa in Anopheles gambiae complex, but could distinguish An. pretoriensis sequences from sister taxa. CONCLUSION: The lack of clarity from COI sequence analysis highlights potential challenges of species identification within species complexes. These results provide supporting data for the development of molecular assays for delineation of Anopheles in east Ethiopia.


Assuntos
Anopheles/classificação , DNA Espaçador Ribossômico/análise , Complexo IV da Cadeia de Transporte de Elétrons/análise , Mosquitos Vetores/classificação , Animais , Anopheles/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Etiópia , Malária , Mosquitos Vetores/genética , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
20.
Acta Trop ; 188: 180-186, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30189199

RESUMO

Malaria is a major public health concern in Ethiopia. With the increase in malaria cases in the Somali Region of Ethiopia, understanding the distribution and identifying the species of malaria vectors is vital to public health. Here we report the first detection of Anopheles stephensi in Ethiopia, a malaria vector typically found in the Middle East, the Indian subcontinent, and China, but recently found in Djibouti. An entomological investigation was conducted during November to December 2016 in Kebri Dehar town of the Ethiopian Somali Regional State as ancillary work for Anopheles spp. surveillance. Mosquito larvae were collected from water reservoirs. Larvae were reared in the laboratory to the adult stage and identified morphologically. PCR and sequencing of cytochrome oxidase 1 (COI) and internal transcribed spacer 2 (ITS2) loci were performed. Basic Local Alignment Search Tool (BLAST) was used to compare sample sequences to sequences in the NCBI nucleotide database for species identification. To further analyze the relationship between the specimen we collected in Kebri Dehar and other Anopheles samples available in Genbank, phylogenetic analysis was performed using a maximum likelihood approach. Molecular and morphological results confirm specimens were An. stephensi. The closest high scoring hit was for all specimens was for the An. stephensi sequence. Independent phylogenetic analyses of COI and ITS2 sequences revealed in both cases strong bootstrap (100) support for our sequence forming a clade with other An. stephensi sequences to the exclusion of any other species of Anopheles. In conclusion, Anopheles stephensi is present in Kebri Dehar town in Ethiopia. These findings highlight the need for additional research to examine the role of An. stephensi in malaria transmission in Ethiopia.


Assuntos
Anopheles/classificação , Malária/transmissão , Mosquitos Vetores/classificação , Animais , Sequência de Bases , Entomologia/métodos , Etiópia , Larva/genética , Filogenia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...